Differential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization

نویسندگان

  • Yee Wen Choon
  • Mohd Saberi Mohamad
  • Safaai Deris
  • Rosli Md. Illias
  • Chuii Khim Chong
  • Lian En Chai
  • Sigeru Omatu
  • Juan Manuel Corchado
چکیده

Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains.

Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene d...

متن کامل

Is OptKnock a reliable strategy for desirable mutants?

Flux balance analysis (FBA) has enabled the development of computational methods for predicting optimal knockout strategies to genetically engineer microbial strains for desirable behavior, such as optimal biochemical overproduction for alternative energy sources. Many of these existing methods are based on bi-level optimization formulations to maximize the desired biochemical overproduction at...

متن کامل

Using Bees Hill Flux Balance Analysis (BHFBA) for in silico Microbial Strain Optimization

Microbial strains can be manipulated to improve product yield and improve growth characteristics. Optimization algorithms are developed to identify the effects of gene knockout on the results. However, this process is often faced the problem of being trapped in local minima and slow convergence due to repetitive iterations of algorithm. In this paper, we proposed Bees Hill Flux Balance Analysis...

متن کامل

Gene Knockout Identification Using an Extension of Bees Hill Flux Balance Analysis

Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the ...

متن کامل

Co-evolution of strain design methods based on flux balance and elementary mode analysis

More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after followed the publication of OptKnock, the first strain design method using bilevel optimization to couple cellular growth with the production of a target product. This initiated the devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014